VFP Benchmark の Android 版も 64bit 対応になりました。
対応していれば arm64 (arm64-v8a), x86_64 (x64), mips64 で計測を行います。
なお iOS 版はすでに 64bit (arm64) に対応しています。

VFP Benchmark v1.3
VFP Benchmark (Google Play)

下記は Nexus 9 (Tegra K1 64) での結果の比較です。

NVIDIA Denver            ST-SP    ST-DP   MT-SP   MT-DP
----------------------------------------------------------------
AArch32 32bit armv7a     17.799   4.423   34.582   8.719  GFLOPS
AArch64 64bit arm64      17.906   8.762   34.888  17.601  GFLOPS

 * ST=Single thread, MT=Multi thread
 * SP=Single precision fp, DP=Double precision fp
 * 単位は GFLOPS, 数値が大きい方が高速

AArch64 は倍精度 NEON 命令が使えるため DP の速度が 2倍になっています。
より詳しい結果は下記ページに載せています。

VFP Benchmark Log

// Tegra K1 Denver arm64
                                  時間(sec)  MFLOPS
---------------------------------------------------
FPU fmul (32bit x1) n8        :    2.049     1952.1
FPU fadd (32bit x1) n8        :    1.000     3998.3
FPU fmadd (32bit x1) n8       :    1.849     4326.0
NEON fmul.2s (32bit x2) n8    :    1.842     4343.8
NEON fadd.2s (32bit x2) n8    :    1.259     6356.0
NEON fmla.2s (32bit x2) n8    :    1.900     8420.3
NEON fmul.4s (32bit x4) n8    :    1.837     8711.7
NEON fadd.4s (32bit x4) n8    :    1.179    13570.5
NEON fmla.4s (32bit x4) n8    :    1.831    17475.0

FPU fmul (64bit x1) n8        :    1.930     2072.7
FPU fadd (64bit x1) n8        :    0.929     4306.0
FPU fmadd (64bit x1) n8       :    1.798     4450.2
NEON fmul.2d (64bit x2) n8    :    1.809     4422.6
NEON fadd.2d (64bit x2) n8    :    1.195     6695.8
NEON fmla.2d (64bit x2) n8    :    1.826     8762.0

fmul.2s, fmul.4s の速度差が無いため、Cortex-A15 と異なり NEON 命令の実行は
128bit 単位と思われます。
おそらく Nexus 9 の Denver は 2.2GHz 前後で動作しており、
1 cycle あたりスカラー乗算 で 1、加算が 2。
SIMD ではこの割合が 4 mul, 6 add, 4 mad となっています。
表にまとめると下記の通り。(数値が大きい方が cycle あたりの演算能力が高い)

                 Scalar SP       Scalar DP
                 mul add mad     mul add mad
----------------------------------------------
Cortex-A9  32      1   1   2     0.5   1   1
Cortex-A15 32      1   1   2       1   1 1.4
Krait 400  32      1   1   2       1   1   2  (Qualcomm)
Swift      32      1   1   1       1   1   1  (Apple A6)
Denver     64      1   2   2       1   2   2  (NVIDIA Tegra) ←
Cyclone    64      2   3   4       2   3   4  (Apple A7/A8)
Silvermont 64      1   1   -     0.5   1   -  (Intel BayTrail Atom)
Jaguar     64      1   1   2     0.5   1   -  (AMD Kabini)


               SIMD2(32x2) SP    SIMD4(32x4) SP    SIMD2(64x2) DP
                mul add mad       mul add mad       mul add mad
------------------------------------------------------------------
Cortex-A9  32     2   2   4         2   2   4         -   -   -
Cortex-A15 32     4   4   8         4   4   8         -   -   -
Krait 400  32     2   2   4         4   4   8         -   -   -
Swift      32     2   2   4         4   4   8         -   -   -
Denver     64     2   3   4         4   6   8         2   3   4  ←
Cyclone    64     4   6   8         8  12  16         4   6   8
Silvermont 64     -   -   -         2   4   6       0.5   1 1.5
Jaguar     64     -   -   -         4   4   8         2   2   4

↑この表は命令あたりの演算個数で、積和を 2とみなしています。
より詳しい表は下記ページに載せています。

CPU の浮動小数点演算能力の詳細

Denver は CPU core と比べても比較的おとなしい結果となっています。
浮動小数点演算において特に突出した特徴は持っていないので、
core の数が少ない分だけ Multi-Thread 時のピーク値が低くなっています。
下の表は 32bit 版 Tegra K1 を搭載した SHILD Tablet との比較です。

Tegra K1 (数値はGFLOPS)          ST-SP   ST-DP  MT-SP    MT-DP
---------------------------------------------------------------
Denver     AArch32 32bit armv7a  17.799  4.423  34.582   8.719  Nexus 9
Denver     AArch64 64bit arm64   17.906  8.762  34.888  17.601  Nexus 9
Cortex-A15 ARMv7A  32bit armv7a  17.136  3.431  70.174  14.036  SHIELD Tab

これだけ見ると Cortex-A15 版の方が優れているように見えますが、
あくまで浮動小数点演算命令だけの結果です。
実際には ARM の 64bit 命令セットが使えるメリットは大きく、
アプリケーションの動作速度ではこれらと大きく異なった結果になると思われます。

↓の表は WebGL (Emscripten) 物理エンジン ベンチマークの結果比較で、
Nexus 9 はかなり高速に実行できています。

Nexus 9        Tegra K1  Denver     64  Android 5.0  Firefox 33  13体
iPad Air 2     Apple A8X Cyclone    64  iOS 8.1      Safari      13体
MeMO Pad ME176 Z3740     Silvermont 32  Android 4.4  Firefox 33   9体
Tegra Note 7   Tegra 4   Cortex-A15 32  Android 4.4  Firefox 33   8体
Nexus 5        MSM8974   Krait 400  32  Android 4.4  Firefox 33   8体
Nexus 7        APQ8064   Krait      32  Android 5.0  Firefox 33   5体

詳しくは下記ページで。現在は Firefox でも正しく描画されるようになっています。

iOS8 で WebGL & 物理エンジンのベンチマーク結果


● Android NDK のアセンブラ命令

clang と gcc4.9 の違いかもしれませんが、左側の省略記法が使えなかったので
右のようにレジスタ名への展開が必要でした。

orr.16b  v1, v0, v0      →     orr   v1.16b, v0.16b, v0.16b
fmla.4s  v0, v8, v4      →     fmla  v0.4s,  v8.4s,  v4.4s


関連エントリ
iPad Air 2 (Apple A8X) の浮動小数点演算能力
Android x86 Binary Translator を試してみる
Atom Bay Trail の浮動小数点演算能力
VFP Benchmark v1.1 浮動小数点演算命令の速度 (NEON/SSE/AVX)
ARM CPU の VFP Benchmark アプリ 浮動小数点演算速度の計測
iPhone 5s A7 CPU の浮動小数点演算速度 (2) (arm64/AArch64/64bit)
iPhone 5s A7 CPU の浮動小数点演算速度 (32bit)
Nexus 10 CPU Cortex-A15 の速度
Nexus 10 CPU Cortex-A15 の浮動小数点演算速度
Qualcomm APQ8064 GPU Adreno 320 の速度
Qualcomm APQ8064 Krait/A6 swift の浮動小数点演算能力
ARM Cortex-A8 の NEON と浮動小数演算最適化
benchmark 関連